| Title:          | Hydrological Monitoring of a Desiccated Slope                                                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author:         | Emma McConnell                                                                                                                                                                                                 |
| Main Objective: | To quantify the spatial and temporal changes in infiltration through a desiccated slope.                                                                                                                       |
| Main Benefit:   | To help identify indicators of deterioration within the hydrological regime of a desiccated slope.                                                                                                             |
| References:     | <b>1</b> - Yu Z., Eminue O.O., Stirling R., Davie C., & Glendinning S. (2021) Desiccation cracking at field scale on a vegetated infrastructure embankment. <i>Géotechnique Letters</i> , <b>11</b> (1), 1-21. |

## Background and description of the project

- Infiltration though desiccated slopes is a growing risk to their stability as future climate change projections promote crack formation and therefore their vulnerability to infiltration<sup>1</sup>.
- Infiltration through cracked soils is highly complex and there is a need to understand how it evolves temporally and spatially with exposure to numerous dry-wet cycles.
- Presented here are initial results from long-term hydrological monitoring of a highly instrumented, large, outdoor slope constructed in a lysimeter which has been subject to desiccation.

## Factors that influenced the design of the monitoring project

- It was important to ensure the project design was representative of real-world infrastructure embankments:
  - I. Use of highly plastic, cohesive material that is prone to desiccation but also commonly used in UK embankments (Ampthill Clay).
  - II. Compacted to specifications (wet of optimum)
  - III. Representative slope geometry (flat crest, 1:2 slope)
  - IV. Outdoor location of slope to ensure exposure to realistic environmental conditions.
  - Detailed enough instrumentation to capture changes in slope hydrology over time without influencing slope integrity.

## Scope of the instrumentation used





Transition from a non-polygonal 1<sup>st</sup> generation crack pattern (A) to a 2<sup>nd</sup> generation polygonal pattern (C&D) occurred during a dry-wet-dry cycle. Cracks fully heal inbetween (B).



Slope instrumentation firstly illustrates evaporative drying (high suction, low water content, no runoff) before a marked increase in water content, suction loss and high runoff/effective rainfall associated with a wetting event. Different baseline conditions can be observed at the onset of the 1<sup>st</sup> versus the 2<sup>nd</sup> generation crack pattern.

## Most significant information derived

- 1. Deterioration due to cracking and changes in volumetric water content and suction can be quantified through the slope profile.
- 2. Shallower soil depths, where cracking occurs, are most sensitive to changing environmental conditions.
- Changes in moisture gradients, caused by infiltration through cracks, can possibly change position of subsequent cracks when initiating from a healed state.
- Importance of recording antecedent conditions and cracked state to estimate slope failure risk during wetting events.