

Fibre optic strain measurement for field monitoring of soil-structure interaction

Robert Mair

Cambridge University

ISFMG, Imperial College, 7 September 2022

Outline of Lecture

- Innovative fibre optic sensing for field measurements
- Circular shafts
- Tunnel linings
 - sprayed concrete
 - TBM precast linings
- Early warning detection of impending geotechnical instability
 - slopes
 - sinkholes

" If you cannot measure it, you cannot improve it. " Lord Kelvin

CSIC Mission:

"

Transform the future of infrastructure enabling better decision-making through smarter information

CSIC Vision:

- Enable step changes in construction practice
- Extend asset life & reduce management costs

Phase 1 – 2011-2016 Phase 2 – 2016-2023 www.centreforsmartinfrastructure.com @CSIC_IKC

CSIC: £22m over 12 years from UK Government and Industry

www.centreforsmartinfrastructure.com @CSIC_IKC

Understanding and improving our infrastructure Managing our infrastructure assets

Field demonstrations & case studies

CSIC has deployed novel sensors on over 100 construction sites

A CSIC practical guide published by the ICE

Distributed Fibre Optic Strain Sensing for Monitoring Civil Infrastructure A practical guide

Cedric Kechavarzi, Kenichi Soga, Nicholas de Battista, Loizos Pelecanos, Mohammed Elshafie and Robert J Mair

Distributed Fibre Optic Strain Sensing for Monitoring Civil Infrastructure Kechavarzi, C. et al (2016)

- General concepts
- Practical considerations
- Data processing, analysis and interpretation
- Case studies in geotechnical applications
 tunnels
 - piles
 - diaphragm walls
 - slopes and embankments

Cambridge Centre for Smart Infrastructure & Construction

Innovative Fibre Optic Sensing

Instrumentation

Distributed (Brillouin) fibre optic strain (DFOS) sensing

CSIC Cambridge Centre for Smart Infrastructure & Construction

Innovative fibre optic sensing

Distributed (Brillouin) fibre optic strain (DFOS) sensing

Fibre optics installed in Crossrail and Thames Water shafts

Thames Water: Abbey Mills

Fibre optic monitoring – Crossrail Limmo Peninsula main shaft

Fibre optic monitoring – Crossrail Limmo Peninsula main shaft

CSIC Cambridge Centre for Smart Infrastructure & Construction

Installation of instrumented reinforcement cage

Fibre optic connection to steel reinforcement

Fibre optic monitoring – Crossrail Limmo Peninsula main shaft

Instrumented reinforcement cage – hoop strains

Data acquisition on site

Mechanical and thermal induced strain (Panel 4)

Strains due to bending are very small, strains are dominated by temperature

CSIC Cambridge Centre for Smart Infrastructure & Construction

Measured hoop strain in a 1.2m thick and 53m deep diaphragm wall panel

Sign convention: -ve : compressive strain +ve : tensile strain

- Fibre optics successfully measured strains in shafts
- Compressive hoop strains much more significant than longitudinal bending strains, which are very small
- Reinforcement for longitudinal bending could be substantially reduced

CSIC Cambridge Centre for

Smart Infrastructure

& Construction

• Temperature strains more significant than bending strains

CROSSRAIL (now ELIZABETH LINE)

Innovative fibre optic sensing

Crossrail Liverpool Street Station

Innovative fibre optic sensing

Sprayed concrete lining (SCL) tunnel construction

Innovative fibre optic sensing Cross-passage excavation

Monitoring results

Localised strain effects demonstrated by fibre optics

- Less material (~1350 m³ SCL)
- Less excavation
- Less time
- Safer construction

National Grid London Cable Replacement Tunnels

- 32km of new TBM driven segmental concrete tunnel lining from Willesden to Hackney, and Kensal Green to Wimbledon
- Tunnelling from 2011-2014.
- All concrete linings
- 12km of 4m trapezoidal lining
- 16km of 3.2m expanded lining
- 4km of 3m bolted tunnel lining

Fibre optic instrumented tunnel segments

Innovative fibre optic installation in concrete tunnel segments for National Grid London Power tunnels in collaboration with Costain

Installing fibre optics in precast concrete lining segments (steel fibre reinforced)

National Grid Power Tunnels: fibre optic instrumented tunnel lining segments erected at back of tunnel boring machine

National Grid Power Tunnels Two adjacent rings of fibre optic instrumented tunnel lining segments

Short-term monitoring of longitudinal thrusts

Time-dependent build-up of ground loading

Regents Park (1994) & JLE (1996) Load cells between segments Open face tunnelling

National Grid (2012) Fibre optic strain gauges EPB tunnelling

Axial forces and bending moments in steel-fibre reinforced concrete linings

Normalised axial loads in London Clay tunnels

Regents Park (1994) & JLE (1996) Load cells between segments Open face tunnelling

National Grid (2012) Fibre optic strain gauges EPB tunnelling

Strain measurement for early warning detection of impending geotechnical instability

slopessinkholes

Rockfall Detection on Hooley Railway Cutting 30m deep cutting in Chalk, 25km south of London

Fibre optic sensing trial in 100m of cutting CSIC, Network Rail, Bam Nuttall, Bam Ritchies

Fibre optic sensing technologies used

Distributed fibre optic sensing (DFOS)

Fibre Bragg grating (FBG)

System installation

Fibre optic cables attached to rockfall mesh and fixed to ground anchors drilled into cutting face at 20m centres

System installation

Cables installed at four different heights along the cutting. Both DFOS and FBG cables attached to each clamp - allowing both systems to be attached at the same time

FO instrumented geogrid for ground movement detection – Tilehouse Lane Cutting (HS2)

Xiaomin Xu et al (2022) – paper to this conference

Development of DFOS instrumented geogrid CSIC, Huesker and Epsimon

FO instrumented geogrid for early warning detection CSIC, Jacobs, Huesker, Epsimon, Align, HS2 (Xu, X et al, 2022)

Preliminary field tests on instrumented geogrids Xu, X et al, 2022

Small displacements

Large displacements

Large scale installation of Sensorgrid (100m long, 10m wide) Xu, X et al (2022)

- Fibre optic sensor monitoring: huge potential for strain measurement for monitoring soil-structure interaction
- Circular shafts
 - Hoop compressive strains much more significant
 - Longitudinal bending strains very small
- Tunnels
 - Sprayed concrete linings: strains induced around openings
 - TBM precast concrete linings: improved understanding of induced loads
- Early warning detection of impending geotechnical instability
 - Slopes
 - Sinkholes

